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Abstract-Steady-state natural convection in a toroidal loop with a heated diametrical branch and cooled 
side branches is studied. The loop is rotated to vary the tilt angle of the diametral branch. A one-dimensional 
analysis provides the fluid velocities and temperature distributions in the loop. The effects of axial con- 
duction are examined. With increasing tilt from the vertical, the fluid in the lower side branch slows down 
and reverses. The flow through the central branch increases and the main return path is through the 
upper side branch. For small tilt angles around the horizontal, multiple steady states exist. Comparison 
experiments on a water-filled glass loop are in qualitative agreement with the analysis and multiple steady 

states are observed. 

INTRODUCTION 

THE STEADY and time dependent behavior of closed 
natural circulation loops is important for engineering 
applications, and for an understanding of flow pro- 
cesses in thermosyphons. Recent advances have been 
reviewed [ 1,2]. Many of these studies have considered 
loops in which a single flow channel describes a spatial 
configuration which closes upon itself. Most analyses 
have assumed one-dimensional channel flows, such 
that pressure, velocity and temperature are uniform 
over any cross-section of a channel. Qualitatively, 
one-dimensional models have been able to describe 
some of the important aspects of thermosyphon 
behavior. However, multi-dimensional flows do exist 
[3-S], and are important for the determination of fric- 
tion factors and heat transfer coefficients. 

Both single- and multiple-loop thermosyphons are 
important in practical applications. For example, the 
emergency cooling of a nuclear reactor might employ 
multiple flow paths through the reactor core [6], or 
the solar energy collectors for a solar power plant 
might be placed in parallel and be driven by natural 
convection. One of the early studies of multiple loops 
was that of Chato [7], who examined flows in a 
parallel-channel system and observed multiple steady 
states. Zvirin et al. [8, 91 developed a non-heat-con- 
ducting model for a loop with a single heater and 
multiple cooling paths. Zvirin [lo] also studied the 
onset of motion in an arrangement of vertical tubes 
running between a lower heat source and an upper 
heat sink, and the transient behavior of loops with 
parallel channels [ 111. 

There are important differences in the one-dimen- 
sional modeling of thermosyphons with single and 
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multiple loops. This has been discussed in ref. [ 121 for 
a general configuration of tubes of arbitrary shape 
starting from one point and ending at another. For 
single loops, either axially heat-conducting or axially 
non-heat-conducting energy equations can be used. 
Axial conduction is important mainly in the study of 
the onset of convective motion [13], but appears to 
make little difference in velocity predictions. For mul- 
tiple loops, however, unless all branches but one are 
identically equal in all respects, continuity of tem- 
perature at the branch junctions cannot be assured 
when axial conduction is neglected. At branch junc- 
tions, fluid streams of different temperatures may join 
and mix. Only an axially heat-conducting model is 
strictly valid, even though axial conduction might be 
orders of magnitude smaller than convection over 
most of the loop. Thus, the one-dimensional problem 
becomes one of singular perturbation. Thermal 
adjustment regions, or axial thermal boundary layers, 
must be included near branch junctions. Such axial 
boundary layers separate the flow into conducting and 
non-conducting, inner and outer regions, respectively 
[14]. The axial boundary layers should not be con- 
fused with wall boundary layers which do not arise in 
a one-dimensional analysis. 

Another important aspect of multiple-loop thermo- 
syphons is related to differences between branches 
which were designed to be identical. Manufacturing 
imperfections and operation over a long time can lead 
to slight differences in the friction, heat transfer, or 
geometrical characteristics. It is important to know if 
such differences could significantly alter the steady- 
state behavior. The easiest difference to introduce and 
measure is a change in the gravity component due to 
a tilt from perfect symmetry. 

To examine the effect of differences between the 
branches of a multiple-loop thermosyphon, we will 
consider a toroidal loop with an extra diametral 
branch in the center as shown schematically in Fig. 1. 
This is a double-loop configuration which will permit 
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NOMENCLATURE 

change in local buoyancy force 
fluid specific heat 
tube diameter 
friction coefficient 
acceleration due to gravity 
distribution of convective heat transfer 
coefficient, equation (6) 
non-dimensional h, equation (13) 
convective heat transfer coefficient in 
heat exchanger 
non-dimensional heat transfer 
coefficient in heat exchanger, 
equation (15a) 
thermal conductivity 
pressure 
non-dimensional parameter, 
equation (8~) 
dimensional pressure parameter, 
equation (4) 
heat input per unit length in the heater 
total heat generated by electrical 
resistance heater 

T,* 

6T, 

AT 

xi 

XT 

Ui 

u: 

reference temperature taken to be that 
of the cooling water 
temperature difference over the middle 
third of branch i 

characteristic temperature difference, 
equation (8e) 
non-dimensional axial coordinate 
measured from point A, equation (8a) 
dimensional axial coordinate measured 
from point A in Fig. 1 
non-dimensional fluid velocity in 
branch i, equation (8b) 
dimensional fluid velocity in branch i. 

Greek symbols 
a tilt angle of central branch from vertical, 

see Fig. 1 

B volumetric thermal expansion coefficient 
A non-dimensional axial heat conduction 

parameter, equation (15b) 
V kinematic viscosity 

P fluid density. 

Subscripts 
A upper branch junction of loop in Fig. 1 
B lower branch junction of loop in Fig. 1 
i 1, 2 and 3 for right side, central and left 

side branches of the loop in Fig. 1. 

one-dimensional analysis and a qualitative com- 
parison with experiment. The loop can be tilted in a 
vertical plane. A spatially uniform heat flux is applied 
in the central branch. The middle thirds of the two 
side branches are cooled by constant temperature heat 
exchangers. The remaining two thirds of the side bran- 
ches are adiabatic. Tilting the loop varies the angle of 
the diametral branch and the relative heights of the 
two cooling sections. In this paper, the fluid velocities 
and temperatures in the three branches are examined 
analytically and experimentally as a function of tilt 
angle and heat input. The role of axial conduction is 
also explored. 

In the following sections, the non-dimensional 
governing equations will first be developed, followed Ro. 1. Schematic of double-loop thermosyphon. 

by a discussion of branch junction conditions which 
apply for axially heat-conducting and axially non- dimensional form of variables which will later be made 
heat-conducting models. Analytical and experimental nondimensional. Index 2 refers to the central branch 
results are then presented. and 1 and 3 to the right and left side branches, respec- 

tively. The fluid velocity u* in each branch is taken as 

GOVERNING EQUATIONS 
positive when directed away from A and is uniform 
in the axial direction, since the tubes are assumed to be 

The branch junction A in Fig. 1 is taken to be the of constant inside diameter d and the fluid is assumed 
origin of coordinates x,? (i = 1,2,3) which run along incompressible. The radius of the outer loop is R. 
the three branches as shown. Asterisks denote the I denotes the fluid temperature in each leg 
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(i = 1,2,3). The tilt angle a of the central branch 
is measured counterclockwise from the vertical. The 
gravity vector is vertical. 

zd2 2 d2T: qPeu$!?! = q’ + !K&_ 
dx: 4 dxf2 (7) 

where the heat input q’ per unit length is assumed 
Dimensional equations constant over the length of the branch. The last term 

The governing one-dimensional equations in in equations (5) and (7) represents heat transfer due 
steady-state form are given in ref. [12]. From mass to axial conduction. 
conservation we have 

u:+u;+u: = 0. ( 1) Non-dimensional equations 

The momentum equation can be integrated along 
We choose the following non-dimensional variables 

the length of each branch. For the side branches xi = x:lsR @a) 

ui = u,‘/xRF 
nRFu:+ya~~~~sin~fa)dx:=P*, i=l,3 ,, ,, (8b) 

(2) 
P = $~*-p~)+2gRcosa lr2R2F2 (8~) 

where the negative and positive signs are for i = 1 and 
3, respectively, and F is a friction coefficient,? g is the 

T1 = (T: - T$)/AT (W 

acceleration due to gravity, and /I is the volumetric with 

expansion coefficient. For the central branch, inte- 
gration of the momentum equation yields 

AT = sRFZ/gj. (W 

r2R The governing equations (l)-(3) and (59-o-() become 

2RFu: + gfl cos a 
J 

T;dx: = P*. (3) 
0 

11, +u2+u3 = 0 (9) 

The right-hand sides of equations (2) and (3) intro- 

s 

I 

duce a parameter, P*, given by Ui + T,sin(nx,+a)dx, = P, i = 1,3 (10) 
0 

P* =$(p,-p,)+2gR(I+/IT$)cosa (4) 2 

s 

2/n 
;u,+cosa Tzdxz = P (11) 

0 

where pA and ps are the fluid pressures at A and B 
and p is the fluid density at a reference temperature 
T:, taken to be that of the cooling water in the heat 

ui$ = -HT,+Iz, i = 1,3 (12) 
I I 

exchangers. The product pP* represents the driving 
pressure difference for the three branches of the loop, 
and is equal to the pressure difference (PA-pB) less 

H(xi) = 
Hoin$<xi<j 

0 otherwise (13) 

that induced hydrostatically by the fluid at the ref- 
erence temperature. 

and 

The energy equation for the side branches is 

lrd2 2 d2T.+ 
qpcuf~=ndh(x:)(T~-T~)+~k~, 

dT, d=T, 
u2-d-x- = Q+I-- 

dx: . 2 

r I The controlling parameters are 

(14) 

i= 1,3 (5) 

where c is the fluid specific heat, h is the convective 
heat transfer coefficient, and k is the fluid thermal 

Ho = 4h,/dpcF 

I = k/n2R =pcF 

(15a) 

(15W 

conductivity. The wall heat transfer coefficient in 
equation (5) is given by 

Q = 4q’llrd’pcFAT (15c) - _. 

h in?LR<x*<?!R 
and a, which respectively represent the convective heat 

’ 3 ’ 3 
transfer in the coolers, axial conduction, the input 

(6) heat flux, and the tilt angle of the loop. 
0 otherwise. 

The choice h(xf) = 0 in equation (6) corresponds to BRANCH MATCHING CONDITIONS AND THE 
the adiabatic sections of the side branches. The driving ROLE OF THERMAL CONDUCTIVITY 
temperature difference in the heat exchangers is 
(T,* - Ti*). For the central branch 

Energy equations (12) and (14) represent ordinary 
differential equations which require boundary condi- 
tions. The boundary conditions are applied at the ends 
of each branch of the loop, and serve to couple the 
velocities and temperature fields in the three branches 

t F represents the friction force per unit length per unit of the loop. The matter is delicate since the order 
mass flow. For laminar Poiseuille flow, F = 32v/d*. of the equations changes as axial conduction is 
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included or not included. The role of axial conduction, 
and the matching conditions at the branch junctions, 
are expfored in this section. Whenever solutions were 
required, they were obtained with the aid of the sym- 
bolic manipulation program MACSYMA [IS], and 
then verified. Numerical computations were carried 
out with a Hewlett Packard Integral Personal Com- 
puter. 

When axial conduction is included, the energy equa- 
tions require two boundary conditions for each 
branch of the loop to complete the probiem speci- 
fication. Contin~ty of fluid temperature at branch 
junctions A and B in Fig. 1 implies that 

K= TA, i=1,2,3 at A (16a1 

K= TB, i= 1,2,3 at B. (16b1 

However, r, and TB are unknown and two additional 
relations are needed. These are provided by heat bal- 
ances which state that the sum of the heat fluxes arriv- 
ing at A and B must vanish. The heat fluxes include 
convection and conduction and the part due to con- 
vection is identically zero by continuity of tempera- 
ture, equations (16), and mass conservation, equation 
(9). Thus, the additional relations become 

(171 

at A and B. 
Energy equations (12) and f14) can be solved in 

terms of TA and T, by using conditions (16a) and 
(16b). In turn, TA and TB can be determined from 
equation (17). The resulting temperature distributions 
in the three branches are linearjexponential functions 
of xi and involve the fluid velocities in the respective 
branches. The continuity and momentum equations 
(9)-(11) form a set of four equations with the three 
velocities and Pas the unknowns. Since the functional 
forms of Ti(xi) appearing therein are known, the set 
can be solved by using a Newton-Raphson procedure 
where at each iteration the Jacobian is calculated by 
using finite differences. T~~Ily about ten iterations 
are required for solution conver~en~ to IQ-%X. 

When axial conduction is negligible, the conduction 
parameter ;t tends to zero and most of the temperature 
field is governed by an outer non-conducting solution. 
The tem~rature, however, must be ~on~nuous 
between the outer region and an inner region (e.g. 
near branch junctions). The inner region is a narrow 
layer or zone wherein the conduction term in equation 
(12) is of the same magnitude as other terms in the 
equation. Thus, the width of this layer is of the order 
of n/uZ. (Even though A is much smaller than the other 
parameters in our problem, axial conduc~on in any 
branch must be included if the fluid velocity within it 
becomes small.) Whether or not axial boundary layers 

will form at a branch junction depends on the number 
of fIows entering a junction. Axial boundary layers 
will form if two flows of different temperature enter a 
branch junction. Such axial boundary layers form 
only at the downstream ends of the branches which 
flow into a branch junction. Internal axial boundary 
layers also exist if the non-conducting temperature 
field exhibits discontinuities in its derivatives as, for 
instance, near the inlet and outlet to the heat ex- 
changer. In the physical experiments to be described 
later, /? is about lo-” times Q or Ho (see equations 
(15)) and is iO-’ times the lowest value that can be 
successfully handled by our numerical solution 
method using the conducting model. 

If the boundary layer approximation is valid we can 
neglect axial conduction in the outer regions of the 
flow by setting 1= 0 in energy equations (12) and 
(14). The equations are then of Iow?r mathematical 
order and continuity of temperature and axial heat 
flux (equations (16) and (17)) cannot both be guaran- 
teed at the branch junctions. We thus need to modify 
the boundary conditions for the non-conducting 
equations to allow for the axial boundary layers. 
When the axial boundary layers are thin, we need not 
determine the temperature ~st~butions within the 
layers, since those tem~rature dist~butions con- 
tribute little to the buoyancy integrals in equations 
(10) and (11). The absence of conductive heat flow 
means that the sum of the convective fluxes at each 
branch junction should vanish. That is 

u,T,+uzTz+u3T, = 0 (181 

at A and B. The ~maining boundary condition comes 
from continuity of temperature at one of the two 
branch junctions. 

Consider a branch junction with one inflowing 
stream and two outflowing streams. The temperatures 
of the two outflowing streams have to be identical and 
equal to that of the inflowing stream. Continuity of 
temperature exists at the branch junction and the mass 
and energy conservation equations (9) and (I 8) are 
satisfied. 

On the other hand, at a branch junction with two 
inflowing streams and one outflowing stream the tem- 
perature may be spatially di~ontinuous when the two 
incoming streams mix. Energy equations (12) and (14) 
with a = 0 can be solved for the inflowing streams 
in terms of the temperature at the upstream branch 
junction where there is temperature continuity. At the 
branch junction with the two inflowing streams, the 
outflow tem~rature is found by applying equation 
(18). We thus obtain the temperature distributions in 
the branches in terms of the velocities. As before, the 
continuity and momentum equations (9)-(11) can be 
solved by using a Newton-Raphson scheme. 

ANALYTICAL RESULTS 

The non~mensional parameters appearing in the 
governing equations (P)-(15) are the tilt angle CI, the 
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heating rate Q, the axial conduction parameter 1, and 
the heat transfer coefficient in the heat exchanger, He 
The first three of these were varied ; Ho was heid tied. 

The parameter ranges were selected to facilitate as 
much as possible a comparison with the experiments 
described in a subsequent section. Thus, laminar 
Poiseuille flow was assumed, with a friction factor 
S = 64/Re (Re = uyd/v) and a heat exchanger Nusselt 
number Nu = h&k = 4. From these relations, the 
friction coefficient F appearing in the governing equa- 
tions is given by 32 v/d’, and the parameter Ho by 
k/2vpc. To obtain numerical values, the physical prop- 
erties of water at 25°C were used [ 161. For the dimen- 
sions of the loop described in the next section, 
F = 0.30 s-’ and Ho = 0.08. The non-dimensional vel- 
ocities, tem~~ture differences, and heating rates of 
the present section can be converted to dimensional 
quantities appropriate to the experiments by mul- 
tiplying by 0.283 m s-l, 33S”C, and 1860 W, respec- 
tively. In the case of Q, the multiplication converts a 
heating rate per unit length to the total heat addition 
in the experiment. 

priate. The analytical-mnnerical solutions to the 
axially-conducting model could be obtained only for 
1> lo-’ due to difficulties in evaluating exponentials 
with large ar~ents. We note that R in the physical 
experiments was around 5.4x lo-‘. On the other 
hand, the non-conducting equations are easier to solve 
but the flow directions have to be guessed beforehand 
in order to apply the proper branch junction 
conditions. The directions of convective motion can 
be difficult to guess when multiple solutions exist. 
Fortunately, multiple solutions are readily found with 
the axially-conducting equations. Therefore, in most 
of the results that follow, we use a conducting model 
with I = 0.00015, which could be used for all tilt 
angles. For small 1, the axial boundary layer regions 
are thin and do not si~ificantly affect the buoyancy 
force. Thus, the conducting and non-conducting solu- 
tions agree for a = 0” in Fig. 3 as 1+ 0. Both the 
conducting and non-conducting methods of solution 
are reasonably accurate when the velocities are mod- 
erate to large. When they are small, as for tlj at small 
;I in Fig. 3 for a = 90”, it may be difficult or impossible 
to obtain nonconducting solutions. 

Eflect of axial conduction 
We will first investigate the effects of the axial con- 

duction parameter, 1. The effect of axial conduction 
on the temperature distribution in a side branch of 
the loop is shown for rr = 0” in Fig. 2(a). The abscissa 
is the axial coordinate x, or x3. Warm fluid enters at 
x = 0 and after being cooled is discharged at x = 1. 
For 1 = 0 there are abrupt changes in slope at the 
inlet and outlet to the heat exchanger. The effect of 
small values of I is to round off the abrupt changes. 

The effects of tilt angle and heat input 
We next examine the effects of tilt angle, a, and heat 

input, Q, on the flow in the loop. We will hold the non- 
dimensional heat transfer coefficient at H, = 0.08. We 
will later compare these results to experimental data 
and show qualitative similarities. 

An important consideration is the effect of I on the 
buoyant drive in the loop. This is displayed with a 
sensitivity study graphed in Fig. 2(b). The ordinate is 
the local change in the buoyancy force, 68, following 
a 5% increase in 1 above a base value of 0.00015. 
U(x) represents the change in the integrand of the 
buoyancy integral in equation (10). The smoothing of 
the temperature field at the inlet and outlet to the heat 
exchanger causes an increase in the total buoyant 
force (i.e. the integral of 6B is positive), and thus 
an increase in the fluid velocity in the loop. This is 
displayed in another way in Fig. 3. The solid curve is 
the velocity in the side branches (u, or Us) for a = 0” 
as a function of 1. For small I, the velocity approaches 
a constant value (corresponding to the 1= 0 limit). 
As 1 is increased, the loop velocity increases, and 
peaks at about 1 = 0.015. For larger I, the loop tem- 
perature tends to become uniform (cf. Fig. 2(a)) and 
the velocity decreases to zero. Results for a loop tilted 
at a = 90” are shown by dashed lines in Fig. 3. For 
small A, the upper side branch velocity u, approaches 
a constant value and ZJ~ (negative) tends to zero. For 
2 2 10m2, axial conduction damps out motion in the 
loop. This corresponds to a critical condition for the 
onset of motion in the loop (i.e. similar to a critical 
Rayleigh number). 

Velocity and temperature fields in the three 
branches of the thermosyphon were computed for a 
wide range of heat inputs. The velocities in the side 
branches (u,, u3) and the associated temperature differ- 
ences across the heat exchangers (6T,, 6T,) are shown 
in Fig. 4 for a = 0” and 90”. For a = 90” only u, is 
displayed since the flow in the other branch is nearly 
zero. The calculated curves represent the solution of 
a set of simultaneous transcendental equations. Sur- 
prisingly, the results are well described by straight 
lines over a two decade variation of Q. Least squares 
fits to the original data yield the power-law relations 
given in Fig. 4. The standard deviation of the power- 
law fits ranged from 1.1 to 2.3%. Clearly, the flow 
velocities for a = 90” are larger than for a = 0” (even 
when u, and uX for the latter are summed), and they 
increase more rapidly with Q. This is due to a greater 
mean height difference between the cooled and heated 
sections in the tilted geometry. Correspondingly, 
with the larger velocities, the 6T’s across the heat 
exchangers are smaller. 

The velocities and the ST’s in Fig. 4 are not inde- 
pendent. An overall heat balance on the loop in non- 
dimensional terms requires 

Some notes about the solution methods are appro- for a nonconducting model. The term on the left re- 
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FIG. 2. (a) Effect of axial conduction parameter, 1, on the tem~rature dis~bution in a side branch of the 
loop: c( = 0” and Q = 0.05. (b) Change in the local buoyancy force, 6B, following a 5% increase in I, above 

a base value of 0.00015. 

Fzc. 3. Velocities I(, and zzj in the side branches of the loop as a function of the axial conduction parameter 
A for two tilt angles : Q = 0.05. 
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FIG. 4. Calculated side branch velocities u, and z+ and temperature differences across the heat exchangers, 
6T, and ST,, as a function of heat input Q for two tilt angles. Best-fit correlation equations are shown. 

presents the heat addition to the loop, and the terms 
on the right represent heat removal by the side bran- 
ches. For the conducting model, on the other hand 

where the effect of heat conduction is expressed in 
terms of differences in the slope of the temperature 
dist~bution across the coolers, S(d~&lx,). The non- 
zero nature of these terms is apparent from Fig. 2(a). 
Equations (19a) and (19b) are exactly satistied by the 
non”conducting and conducting analytical solutions, 
respectively. Equation (19a) is only approximately 
satisfied by the power-law expressions for ui and Hi 
in Fig. 4. For the two values of CI in Fig. 4, the appro- 
priate exponents on Q sum approximately to unity, as 
required by equation (19b), but only approximately, 
since each least squares fit was done separately. More- 
over, it is difficult to be precise about the exponent as 
a moderate change (say + 5%) is just barely perceived 
as a change in slope in the graph. 

The effect of tilt angle a on the flow in the loop is 
illustrated in Fig. 5. The ratio of the velocities in the 
two side branches of the loop, uJu,, is shown in 
Fig. S(a), and the ratio of the temperature differences 
across the two heat exchangers, ST#T,, in Fig. S(b). 
Solid lines correspond to a heat input of Q = 0.05, 
and dashed lines to a heat input of Q = 0.005. In all 

cases, results are shown for I = 0 and 0.00015, 
respectively, corresponding to non-conducting and 
conducting solutions. 

When a = O”, the flows in the two side branches of 
the loop are equal and u&, = 6T3/6T, = 1. As a is 
increased in Fig. 5(a), the velocity in the lower branch, 
u,, decreases while that in the upper branch, a,, 
increases. Thus, u3/u1 decreases. The conducting and 
nonconducting solutions are very close, until one of 
the velocities becomes small, after which the non- 
conducting model is unreliable. The shapes of the 
curves in Fig. S(a) are generally similar at other heat 
inputs, although the descent is steeper at lower heat 
fluxes. 

In Fig. 5(b), results for two heat inputs are shown. 
For Q = 0.05, the conducting and nonconducting 
results are in good agreement. The side branch with 
the lower velocity has the larger temperature drop, 
and 6T,/dT, exceeds unity. At larger inclinations, the 
lower velocity is small enough for axial conduction to 
become im~rtant, and the solutions for 1= 0 and 
0.00015 diverge. This difference is accentuated at 
lower values of Q, as shown by the dashed lines. 
Axial conduction for both Q = 0.05 and 0.005 leads to 
reductions in the temperature difference ST, as a is 
increased. Indeed, for Q = 0.05, the result is a peak 
in 6T,/6T, at intermediate values of a, and, for 
Q = 0.005, a monotonic decay. This represents a sub- 
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FIG. 5. (a) Ratio of calculated velocities in the side branches of the loop, t+/u,. as a function of tilt angle 
a: Q = 0.05. (b) Ratio of calculated temperature differences across the heat exchangers, Xl’&W,, as a 
function of a for Q = 0.005 and 0.05. Conducting (A = 0.00015) and non-conducting (A = 0) solutions are 

shown. 

stantial difference in behavior for Q values differing 
by a factor of ten. 

A flow regime diagram is presented in Fig. 6, and 
regions of multiple flows and flow reversals can 
be identified. The flow velocities ui in the three loop 
branches are shown as functions of a. The heat flux 
and axial conduction were held constant at Q = 0.05 
and 1= 0.00015. (The small circles represent results 
from the non-conducting model.) The diagram in 
Fig. 6 is mirror s~rnet~c about the lines do = 0” and 
180”. 

In Fig. 6, we observe that the lower branch velocity 
a1 decreases to zero as a increases from 0” to 78”. 
Meanwhile, the upper branch velocity u, increases. 
Beyond 78:, u, changes sign. We will denote this criti- 
cal angle by q. The region near a = 90” reveals mul- 
tiple solutions. Over a range of angles near tl = 90”, 
three solutions are available, each with distinct values 
of u,, u2 and aj. In this region, the central branch of 
the loop is nearly horizontal with flow possible in 
either direction. Note that u2 shows an s-shaped 
behavior. For a = 90”, zero velocities represent a solu- 
tion of the conducting equations. For clarity, portions 
of the U, and u, curves in this region have been 
omitted. (Near a = 92”, note that the non-conducting 
equations show a solution (small circles) with finite 
velocities U, and uj, while u2 approaches zero. At 
GL=90°, non-conducting solutions could not be 
obtained.) 

Consider now the behavior near a = 90” in Fig. 6. 
If a is initially 90”, with U, positive, we can increase a 

to an angle greater than 90” without changing the 
direction of u ,. If a is increased beyond a m~imum 
value, denoted by urnax, the iiow in the upper branch 
will reverse and circulate in a ‘natural’ direction. In 
this case, u , jumps to the negative branch of the solu- 
tion. The ‘natural’ direction is the direction in which 
the fluid would move if the experiment was started 
from rest with the given tilt angle and heat input. The 

angle g,,, is graphed in Fig. 7 as a function of heat 
input. The zone of multiple solutions corresponds 
to a values between the limits given by a = 90” It 

(a,,, -90’). In Fig. 7, as Q decreases to a critical value 
for which the rest state is marginally stable, a,,,,, -+ 

90”. Also, in Fig. 7, we include the critical angle a, 
which denotes the angle at which the flow in the lower 
side branch, aj, changes direction. Near a = CL,, 
increasing Q favors positive motion in branch 3, 
requiring thus an increase in tilt angle for the flow to 
change direction. 

EXPERIMENTAL OBSERVATIONS 

The analytical solutions can be compared with 
observations on a laboratory double-loop thermo- 
syphon. The apparatus and experimental results are 
described in this section. 
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FIG. 6. Calculated velocities u,, u2 and u, in the three branches of the loop as a function of tilt angle a: 
Q = 0.05 and 1 = 0.00015. Non-conducting solutions (I = 0) are shown with small circles. a,, denotes 
the angle at which the calculated velocity u, in the upper side branch of the loop reverses direction. a, 

denotes the angle at which the velocity u3 in the lower side branch reverses direction. 

Apparatus 
The experimental loop is in the form of a glass torus 

with a straight glass tube connecting the outer loop 
along its diameter (see Fig. 1). The loop has a tube 
inner diameter of d = 9.75 mm and a torus radius of 
R = 300 mm. An electrical resistance heater (34.8 Q) 
is wound over the entire length of the center branch, 
and is supplied with alternating current from a vari- 
able transformer. External glass heat exchangers were 
built over the middle thirds of the side branches. Tap 
water is circulated through the heat exchangers to 
provide cooling. To allow for flow visualization and 
velocity measurements, no attempt was made to insu- 
late the loop. The whole loop can be tilted about its 
horizontal axis and the tilt angle measured to half a 
degree by a pointer and protractor. 

The temperature of the cooling water was about 
20°C and constant to within 0.2”C for any run. The 
cooling water flow rate was around 115 ml s-’ for 
each heat exchanger, which was high enough so that 
the temperature increase of the cooling water was less 
than 0.2”C. Through small holes in the walls of the 
glass loop, 36 gage (0.127 mm diameter) copper-con- 

stantan thermocouples were inserted. Temperatures 
inside the loop were measured at the inlet and outlet 
to the heat exchangers as well as at the two branch 
junctions. Although the thermocouples were located 
near the duct centerlines, the measured temperatures 
are likely to be reasonably close to the bulk tem- 
peratures due to the expected flatness of the transverse 
temperature profiles at the measurement stations. 
Thermocouple voltages were measured with a Hewlett 
Packard 3466A Digital Multimeter and were also 
recorded on a Houston Instrument pen recorder. 

Fluid velocities in the side branches of the loop 
were obtained from flow visualization. Small fibers of 
colored yam were used as tracers, and their advance 
was manually chronometered. These fibers can be 
assumed to move with the flow since they have a 
settling velocity of less than 1 cm min-’ in stagnant 
water. The velocity in the center branch could not be 
measured since it was obscured by the electrical 
heater. There was a noticeable velocity profile across 
the diameter d of the thermosyphon tube. However, 
only the velocities of the tracers closest to the duct 
centerline were measured. With this selection, the scat- 
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FIG. 7. Calculated values of amex and a, as a function of heat 
input Q : A= 0.00015. 

ter in the velocity measurements was roughly + 5% 
about a mean value. On the basis of a heat balance at 
the heater, the bulk average velocity was estimated to 
be about 0.54 of the tracer velocity. This is consistent 
with a Poiseuille-like velocity profile, in which bulk 
and centerline velocities are in the ratio 1 : 2. 

Steady state was reached within 15 min after turning 
the heater on. Measurements were taken 30 min or 
more after a change of input heat flux or tilt angle. At 
all heat fluxes, even though the temperature of the 
fluid in the entire loop fluctuated in phase with an 
amplitude of l-1.5”C and with a period of about 20 
min, the temperature differences were almost steady. 
For example, the temperature differences 6T, and 6T, 
were found to fluctuate about 1.5% around their mean 
values. 

The graphical results in the next section have non- 
dimensional axes, and some have additional dimen- 
sional axes. The appropriate conversion factors were 
given at the start of the preceding analytical results 
section. However, only a qualitative compa~son 
between experiment and analysis is possible. The 
experiments provide point measurements of tem- 
perature and velocity. The analytical results, on the 
other hand, are expressed in terms of bulk fluid tem- 
perature and mean duct velocity. An additional factor 
in the experiments is heat transfer to and from the 
room. In one heat balance test, about 82% of the heat 
taken out at the coolers came from the heaters, the 
rest being from the room. Nevertheless, even with the 
foregoing reservations, it will be apparent that 

et al. 

the agreement between experiment and analysis is 
favorable. 

Experimental results 
The experimental results are presented in a manner 

which parallels the analytical results of the previous 
section. Indeed, Figs. 8-11 of this section may be 
compared directly with Figs. 47 of the previous 
section. Again, as noted earlier, precise quantitative 
comparisons are not possible. 

Experiments were carried out for a range of heating 
rates, Q. The measured mean centerline velocities in 
the side branches of the loop (u ,, u,), and the tem- 
perature differences (6T,,6T,), are shown in Fig. 8 
for a = 0” and 90”. For CI = O”, the velocities in the 
side branches differed by less than 7%, and the tem- 
perature differences by less than 5%, and averages of 
the two branches were taken. For c( = 90”, only u, 
and 6T, for the upper side branch were measured and 
are shown, The velocity u, is much larger than for 
tl = 0” and measurements were more difficult. Also, 
~1= 90” falls in the range tl, < CI < tlmar. Thus, the u, 
velocities were small and negative, and there was a 
very slow movement of fluid toward the hot branch 
junction. From the agitated motion of the tracers in 
the outflow from this junction, there was a vigorous 
mixing of the incoming hot stream from the central 
branch and the incoming cold stream from the lower 
branch. 

Power-law correlations of the experimental data are 
also given in Fig. 8. Omitting the data at the lowest 
heat flux, the velocities correlate with a standard devi- 
ation of 4%, and the temperature differences correlate 
to within 3%. The correlations are generally similar 
to the theoretical correlations in Fig. 4. Indeed, the 
velocity correlations in Figs. 8 and 4 differ in mag- 
nitude by a factor of about two, corresponding 
roughly to the difference between centerline and bulk 
velocities in laminar duct flow. The largest differences 
in the correlations occur for the temperature differ- 
ence ST, for tl = 90”. The experiments show a weaker 
power law dependence on Q than do the analytical 
results. For each value of tl in Fig. 8, the exponents 
on Q sum approximately to unity as required by the 
heat balance, equation (19a) or (19b). These equations 
represent a basic balance, independent of other equa- 
tions and assumptions, but with coefficients that 
depend on simplifications made in the theory. 

The influence of tilt angle a on the ratio of the 
velocities in the two side branches of the loop, u&,, 
and the ratio of the tem~rat~e differences, 6T3 J&T,, 
is shown in Figs. 9(a) and (b), respectively. Solid lines 
correspond to Q = 0.112 and the dashed lines to 
Q = 0.014. The trends in Fig. 9 can be compared to 
Fig. 5. As with the analytical solutions, the shape 
of the experimental curve for u3/u, in Fig. 9(a) is 
maintained at other heat fluxes, but the curve gets 
steeper as Q is reduced. Other than the fact that the 
experimental curve for 6T,/6T, at Q = 0.014 seems 
to have a second maximum, the general shapes of the 



Analytical and experimental study of steady-state convection 719 

._ 
lo* lo-* to -’ 

0 

FIG. 8. Experimentally-measured side branch velocities u, and I(~ and temperature differences across the 
heat exchangers, 6T, and 6T,, vs the heat input Q for two tilt angles. Best-fit correlation equations are 

shown. Dimensional axes are shown at the top and right sides. 

curves in Fig. 9(b) are in qualitative accord with those 
in Fig. 5(b). The experimental results for ST&ST, thus 
confirm that axial conduction or equivalent effects 
like heat conduction through the glass or fluid mixing 
become important at low velocities (i.e. when u3 
decreases as a increases) or at lower heat fluxes. 

Velocity measurements in the two side branches of 
the loop are shown as a function of the tilt angle, a, 
in Fig. 10. The heat input was held constant. The 
velocity u, becomes small and difficult to measure as 
a is increased. Temperature m~suremen~ indicate 
that uj reverses direction at a = 7.5”. This value is close 
to the analytical value of cc, in Fig. 7. The velocity in 
the upper branch, u ,, increases many times on tilting 
the loop and reaches a maximum before 90”, similar 
to the analytical prediction in Fig. 6. 

The range of angles for which multiple steady states 
are observed is shown in Fig. 11. Note that two differ- 
ent Q scales (above and below) are used. Multiple 
steady states occur over the range of tilt angles 
bounded by a = 90” & (amax - 90’). Both clockwise 
and counterclockwise flows were observed in this 
range of a. Figure 11 corresponds to Fig. 7 of the 
analysis. In the experiments, the inclination angle was 

progressively increased by 0.5”, with Q held constant, 
until a catastrophic change from ‘anti-natural’ to 
‘natural’ flow occurred. Thus, LX,,,,, represents the larg 
est value of a for which a flow reversal did not take 
place. At the lower heat fluxes it was necessary to wait 
more than 15 min for the change. The qualitative 
nature of 01,~~ in Figs. 7 and 11 is different. The reason 
is that the present steady-state theory deals only with 
the existence of solutions, and not with their stability. 
Thus, the theoretical curve in Fig. 7 is an existence 
limit. However, in a region with multiple steady states, 
those flows which are unstable will not be observed. 
It is possible that the experimental results in Fig. 11 
represent the observed stability limit. Except at the 
very lowest values of Q, the observed values of a,,, 
are smaller than the theoretical existence limit, and 
this difIerence increases as Q increases. For very small 
heat fluxes the measured a,,,,, should go to 90”. This 
was not observed. 

The critical angle a, for flow reversal in the lower 
branch was also measured. The tilt angle was 
decreased in 0.5” increments from c1 = 90” until the 
flow in the lower leg changed direction. This was 
indicated by a change in sign of the temperature 
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FIG. 9. (a) Ratio of experimentally-measured velocities in the side branches of the loop, q/u ,, as a function 
of tilt angle a : Q = 0.014. (b) Ratio of experimentally-measured temperature differences across the heat 

exchangers, 67’,/67’,, as a function of a for Q = 0.014 and 0.112. 

FIG. 10. Experimentally-measured velocities a, and u, in the two side branches of the loop as a function 
of tilt angle a : Q = 0.014. 
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FIG. 11. Ex~~mentalIy-measu~d values of amrrZ and cc, as a 
function of Q . arnar denotes the tilt angle at which the velocity 
U, in the upper side branch of the loop was observed 
to reverse direction. a, denotes the tilt angle at which the 
velocity u1 in the lower side branch was observed to reverse 

direction. 

difference across the lower heat exchanger as mea- 
sured by a differential thermocouple connected across 
the heat exchanger. The variation of u, with Q is 
shown in Fig. 1 I, and closely follows the analytical 
result in Fig. 7. 

CONCLUSIONS 

MuItiple-loop the~os~hons can be modeled one- 
dimensionally with or without axial conduction. With 
axial conduction, the continuity of temperature and 
heat flux at branch junctions is guaranteed. Without 
axial conduction, the continuity of temperature can- 
not be assured. At large fluid velocities, the tem- 
perature adjustment region near a branch junction is 
confined to a narrow axial thermal boundary layer. 
Outside of this boundary layer, the non-conducting 
energy equations can be applied if a suitable heat 
balance boundary condition is used at the down- 
stream end of each branch. If the fluid velocity is 
small, as happens in the lower branch of the present 
loop at large tilt angles, the effect of axial conduction 
is spread over a larger region and must be taken into 

account as it affects the buoyancy of the fluid in the 
branch. 

The comparison between theory and experiment 
reveals strong qualitative, and almost quantitative, 
agreement. This is encouraging in view of the limi- 
tations of theory and experiment. The analytical 
approximations include one-dimensionality and con- 
stant friction and heat transfer coefficients. In the 
experiments, only point velocities and temperatures 
could be meas& (appro~mately at the duct center- 
line), and not mean or bulk values. Also, the adia- 
batic sections of the loop were not truly adiabatic. 

Natural convection loops which show symmetry of 
both heating and cooling about a vertical plane (the 
present loop for CC= 90”), such that a rest state is 
theoreticalty possible, can have multiple steady states 
for small tilt angles about the symmetry plane. This 
was confirmed in the present case and was previously 
observed in a square single-loop thermosyphon (171. 

Prior work suggests that axial conduction might 
only be significant near the onset of motion from a 
rest state in natural convection systems [13]. As we 
have shown in Figs. 5 and 9, axial conduction can be 
important when flow velocities are small, but nonzero. 
Thus, the decision to neglect axial conduction in an 
analysis must be carefully considered. 

On tilting the central branch from a vertical position 
(K = 0” in the present thermosyphon), a difference 
between the two side branches is imposed. Flow in the 
lower branch decreases significantly while that in the 
upper branch increases. For tt = lo”, the velocities in 
the two branches differ by more than 40%. This points 
out the sensitivity of the flow in a multiple-loop ther- 
mosyphon to differences between branches that might 
have been designed to be identical, but in practice 
might not be. Large differences in symmetry can lead 
to essentially stagnant flow in one of the branches. 
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ETUDE ANALYTIQUE ET EXPERIMENTALE DE LA CONVECTION PERMANENTE 
DANS UN THERMOSIPHON A DOUBLE BOUCLE 

R&&--On etudie la convection naturelle permanente dans une boucle toroidale avec une branche 
diametrale chauffee et des branches laterales froides. La boucle est toumte pour faire varier l’angle 
d’inclinaison de la branche diametrale. Une analyse monodimensionnelle donne les distributions de vitesse 
et de temperature dans la boucle. Les effets de la conduction axiale sont examines. Quand l’inclinaison 
depuis la verticale augmente, le fluide dans la branche basse diminue et se renverse. L’ecoulement a travers 
la branche centrale augmente et le principal chemin de retour est a travers b cod sup&ieur de la branche. 
Pour des petites inclinaisons autour de l’horizontale, il existe plusieurs &tats stationnaires. Des experiences 
comparatives sur une boucle de verre remplie d’eau sont en accord qualitatif avec l’analyse et on observe 

de multiples &tats stationnaires. 

ANALYTISCHE UND EXPERIMENTELLE UNTERSUCHUNG DER STATIONAREN 
KONVEKTION IN EINEM DOPPELTEN ~E~OS~~ON-LOP 

ZmmmmenfwDie stationiire natiirliche Konvektion in einem Torus mit einem zentralen beheizten 
Teil und zwei gektihlten Seitenteilen wird untersucht. Der Kreislauf wird zur Veriinderung des Nei- 
gungswinkels &es beheizten Teils gedreht. Eine eindimensionale Analyse. liefert die Fluidgeschwindigkeiten 
und die Temperaturverteilungen im Kreislauf. Die Em&se der axialen Leitung werden untersucht. Mit 
zunehmendem Neigungswinkel zur Vertikalen wird die StrGmung im unteren Teil langsamer und tidert 
dann ihre Richtung. Die Strcimung durch den mittleren Teil nimmt au und der Hauptrilckstrom BlIlt 
durch den oberen Teil. Ftir kleine Nei~n~nkel nabe der Horizontalen gibt es mehrfache station&e 
Zustinde. Ver~eichende Experimente mit einem w~~rgef~~n Glaskreislauf stimme~ qua&&v mlt der 

Analyse iiberein, tmd es werden mehrfache stationlire Zust&nde beobachtet. 

AHAJIHTHrIECKOE H 3KCHEPMMEHTAJIbHGE WCCJIEjIOBAHME YCTAHOBMBUIEtrClf 
KOHBEK~HH B TEPM~H~H~ C ~~~H~M KOHTYPOM 

AmsoTaistss-Hccnenyercn yCTaHOBHBIiianC% eCTeCTBeHHal KOHBeXUHl B TO~SilWJlbtIOM LOWl’yilG C Hi%-- 
peeaeMbw nHaMe-rpanbwM H oxnarSnaer+swH ~OICOBHMH oruonaasn. KOHTYP nonopasusamca MI 

mr+seHeiiwi yrna HarcnoHa mar4eTpubeoro 0T~om. C noMombm oruloMepitor0 atramrsa nonyqeubr 
pacnpeneneuun cropocm H +eMneparypbr a roerype. ~ccJICAyKm~ 3@errw arcmublrot nepeniwx 

Terma.Cynenmeme~ yrna orxnouetimr OT ~THKUUI TeweHHex~OcTH BHHIHehf6OKO1)OM OTBoLIe 

3aMe&!IneTc~,a3aTeMH3MeH~s Hit o6paTH~.TeqeHmBUeH~~bHOMOT~Xe~KOpneTcn,X 06pi3T- 

HOi5 TeSeHHe SpOHCXOAHT B OCHOBHOM ‘iQN3 BePXHH# OTBO& npH H&OJIbUXHX jW&lX HaKJlOHa X rOpEi- 
30HTUlJi OTMe‘IsLHlTCS l@e.I&l~ pl?A CTaLMoHapHblX COCTOfUiHii. Pe3yllbTitTbl iSIaJEH3B XWWCTEHHO 
COrnaCyHfTcR C 3KClle~HML?HTaJtbIiblMEi LIBHHYMH, IIOJlyWHHbiMli B CTeXSSHHOM 3BnOJlHeHHOhl BOAO#i 

KOHT)~, me Tame na6momeTcn HeeJlHHcTBeHHoe%T~oHapHoe CocTosHHe. 


